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1 Vector Analysis

1.1 Vector Algebra

1.1.4 Position, displacement and separation vectors

r = xx̂ + yŷ + zẑ r̂ =
r

|r|

r ≡ r− r′ r̂ =
r
|r| =

r− r′
|r− r′|

1.2 Differential Calculus

1.2.1 The Del Operator

∇ =
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

1.2.2 The Gradient

∇T =
∂T

∂x
x̂ +

∂T

∂y
ŷ +

∂T

∂z
ẑ

∇T is the gradient, it points in the direction of maximum increase of the function T .
|∇T | is the magnitude; it is the slope along this maximal direction.

1.2.3 The Divergence

∇ · v =

(
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

)
· (vxx̂ + vyŷ + vz ẑ)

=
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z
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1.2 Differential Calculus E&M Summary by Ellis de Wit

The divergence is how much a vector v spreads out (diverges) from the point in question.

1.2.4 The Curl

∇× v =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣
= x̂

(
∂vz
∂y
− ∂vy

∂z

)
+ ŷ

(
∂vx
∂z
− ∂vz

∂x

)
+ ẑ

(
∂vy
∂x
− ∂vx

∂y

)
The curl is a measure of how much the vector swirls around the point in question.
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1.3 Integral Calculus E&M Summary by Ellis de Wit

1.2.5 Examples of the Divergence and Curl

Zero Divergence Non-Zero Divergence

Zero Curl

Non-Zero Curl

1.3 Integral Calculus

1.3.1 Displacement Vectors

d` = dxx̂ + dyŷ + dzẑ

da = differs per integration you do

dτ = dx dy dz

1.3.2 Line Integrals ∫ b

a

v · d`

1.3.3 Surface Integrals ∫
S

v · da

1.3.4 Volume Integrals ∫
V

T dτ
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1.4 Curvilinear Coordinates E&M Summary by Ellis de Wit

1.3.5 Fundamental Theorems

Fundamental Theorem Definition

of Calculus ∫ b

a

(
df

dx

)
dx = f (b)− f (a)

How to integrate df
dx

; come up with a function

f(x) whose derivative is df
dx

for Gradients ∫ b

a

(∇T ) · d` = T (b)− T (a)

Gradients have the special property that their
line integrals are path independent, therefore∮

(∇T ) · d` = 0

for Divergences (Gauss’
theorem)

∫
V

(∇ · v) dτ =

∮
S

v · da
The integral of a derivative over a region is the
value at the boundary.

for Curls (Stokes’ theo-
rem) ∫

S

(∇× v) · da =

∮
P

v · d`

1.4 Curvilinear Coordinates

1.4.1 Spherical Coordinates

r, distance from the origin, ∈ [0, ∞] x = r sin θ cosφ r̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ

θ, polar angle, ∈ [0, π] y = r sin θ sinφ θ̂ = cos θ cosφx̂+ cos θ sinφŷ − sin θẑ

φ, azimuthal angle, ∈ [0, 2π] z = r cos θ φ̂ = − sinφx̂+ cosφŷ
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1.5 The Dirac Delta Function E&M Summary by Ellis de Wit

1.4.2 Cylindrical Coordinates

s, distance from the z-axis, ∈ [0, ∞] x = s cosφ ŝ = cosφx̂+ sinφŷ

φ, azimuthal angle, ∈ [0, 2π] y = s sinφ φ̂ = − sinφx̂+ cosφŷ

z, cartesian z, ∈ [−∞, ∞] z = z ẑ = ẑ

1.4.3 Displacement Functions

Cartesian: d` = dx x̂+ dy ŷ + dz ẑ dτ = dx dy dz

Cylindrical: d` = ds ŝ+ sdφ φ̂+ dz ẑ dτ = sdsdφ dz

Spherical: d` = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂ dτ = r2 sin θ dr dθ dφ

1.5 The Dirac Delta Function

1.5.1 The One-Dimensional Dirac Delta Function

The dirac delta function is given by:

δ (x) =

{
0, if x 6= 0
∞, if x = 0

}
A couple of properties are given by:∫ ∞

−∞
δ (x) dx = 1∫ ∞

−∞
f(x)δ (x)dx = f(0)

∫ ∞
−∞

δ (x) dx = f(0)∫ ∞
−∞

f(x)δ (x− a)dx = f(a)

1.5.2 The Three-Dimensional Dirac Delta Function

The three-dimensional dirac delta function is given by:

δ (r) = δ (x) δ (y) δ (z)

An important property:

∇ ·

(
∇̂
r2

)
= 4πδ3 (∇)
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E&M Summary by Ellis de Wit

2 Electrostatics

2.1 The Electric Field

2.1.1 Coulomb’s Law

Coulomb’s law is given by:

F =
1

4πε0

qQ

r2 r̂

With ε0 = 8.85× 10−12 C2

N ·m2 being the permittivity of free space.

2.1.2 The Electric Field

Coulomb’s law can also be written as:
F = QE

With

E =
1

4πε0

n∑
i=1

qi
r2i
r̂i

being the electric field.

2.1.3 Continuous Charge Distributions

Sometimes charges are continuously distributed along a line, surface or volume, then instead of using a sum,
an integral will be used.

Line charge E (r) =
1

4πε0

∫
λ

r2 r̂ d`

Surface charge E (r) =
1

4πε0

∫
σ

r2 r̂ da

Volume charge E (r) =
1

4πε0

∫
ρ

r2 r̂ dτ

2.2 Divergence and Curl of Electrostatic Fields

2.2.1 Field lines and flux

A convenient way to visualise the electric field is through field lines, these lines show the direction of the
field through the arrows and show the strength through the density of the field lines. They always go from
a positive charge to a negative one.

Another important concept is the flux; this is a measure of the “number of field lines” passing through S,
given by:

ΦE ≡
∫
S

E · da = EA cos θ
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2.3 Electric Potential E&M Summary by Ellis de Wit

2.2.2 Gauss’ Law

Another important tool to calculate the electric field is Gauss’ law, this is basically the fundamental theorem
for divergences applied to the electric field. Its integral form is given by:∮

S

E · da =
1

ε0
Qenc

Following from this we can get the differential form:∮
S

E · da =

∫
V

(∇ ·E)dτ and Qenc =
1

ε0

∫
V

ρdτ∫
V

(∇ ·E)dτ =

∫
V

(
ρ

ε0
)dτ ⇒ ∇ ·E =

1

ε0
ρ

2.2.3 The Curl of E ∮
E · dl = 0 ∇× E = 0

2.3 Electric Potential

2.3.1 The Electric Potential

The electric potential is given by:

V (r) ≡ −
∫ r

O
E · d`

Where O some standard reference point on which we have agreed beforehand.
From the potential we can find the electric field again:

E = −∇V

2.3.2 Poisson’s Equation and Laplace’s Equation

∇ ·E =
1

ε0
ρ

∇ · (−∇V ) =
1

ε0
ρ

So ∇2V = − 1

ε0
ρ

This last equation is called Poisson’s equation. In regions where there is no charge, so ρ = 0, Poisson’s
equation reduces to Laplace’s equation:

∇2V = 0

2.3.3 The Potential of a Localized Charge Distribution

You can also directly integrate over a line, surface or volume to find the potential:

Line charge V (r) =
1

4πε0

∫
λ(r′)

r d`′

Surface charge V (r) =
1

4πε0

∫
σ(r′)

r da′

Volume charge V (r) =
1

4πε0

∫
ρ(r′)

r dτ ′
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2.4 Work and Energy in Electrostatics E&M Summary by Ellis de Wit

2.3.4 Boundary Conditions

2.4 Work and Energy in Electrostatics

2.4.1 The Work It Takes to Move a Charge

The work necessary to move a test charge Q in an electric field is given by:

W =

∫ b

a

F · dl = −Q
∫ b

a

E · dl = Q[V (b)− V (a)]

This answer is independent of the path you take from a to b; in mechanics, then, we would call the electrostatic
force “conservative.”

2.4.2 The Energy of a Point Charge Distribution

How much work would it take to assemble an entire collection of point charges? Imagine bringing in the
charges, one by one, from far away, the work would be given by:

W =
1

4πε0

n∑
i=1

n∑
j>i

qiqj
rij

Important to not is that the first charge, q1, takes no work, since there is no field yet to fight against, also
important is to not count the pairs twice.
This equation can also be rewritten as:

W =
1

2

n∑
i=1

qiV (ri)

2.4.3 The Energy of a Continuous Charge Distribution

When we have a continuous charge distribution we get:

W =
1

2

∫
ρV dτ

Using Gauss’ law we can rewrite this to:

W =
ε0
2

∫
E2dτ
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2.5 Conductors E&M Summary by Ellis de Wit

2.4.4 Comments on Electrostatic Energy

It is important to note that the electrostatic energy does not obey a superposition principle, for two charges,
the electrostatic energy becomes:

Wtot = W1 +W2 + ε0

∫
(E1 ·E2)2 dτ

2.5 Conductors

2.5.1 Basic Properties

There are insulators and conductors. In an insulator, such as glass or rubber, each electron is on a short
leash, attached to a particular atom. In a metallic conductor, by contrast, one or more electrons per atom
are free to roam. A perfect conductor would contain an unlimited supply of free charges. In real life there
are no perfect conductors, but metals come pretty close, for most purposes. From this definition, the basic
electrostatic properties of ideal conductors immediately follow:

i E = 0 inside a conductor

ii ρ = 0 inside a conductor

iii Any net charge resides on the surface

iv A conductor is an equipotential

v E is perpendicular to the surface, just outside a conductor

2.5.2 Induced Charges

If you hold a charge +q near an uncharged conductor, the two will attract one another. The reason for this
is that q will pull minus charges over to the near side and repel plus charges to the far side.

If there is some hollow cavity in a conductor, and there is a charge in there, the field in the cavity will not
be zero, in the conductor the field will be zero and outside the conductor will have the same electric field as
the charge in the cavity.

2.5.3 Capacitors

Suppose we have two conductors, and we put charge +Q on one and −Q on the other. Since V is constant
over a conductor, there will be a constant potential difference which will be proportional to the charge Q.

C ≡ Q

V

Where C is the capacitance, which is a purely geometrical quantity, determined by the sizes, shapes, and
separation of the two conductors.

To “charge up” a capacitor, you have to remove electrons from the positive plate and carry them to the
negative plate for which you have to do work.

W =

∫ Q

0

( q
C

)
dq

=
1

2

Q2

C

=
1

2
CV 2
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E&M Summary by Ellis de Wit

3 Potentials

3.4 Multipole Expansion

3.4.1 Approximate Potentials at Large Distances

A (physical) electric dipole consists of two equal and opposite charges (±q) separated by a distance d. A
dipole is a special and interesting configuration of charges, more of these are known:

One can also develop a systematic expansion for the potential of any localized charge distribution, in powers
of 1/r. The final result, the multipole expansion of V , of this is given by:

V (r) =
1

4πε0

∞∑
n=0

1

r(n+1)

∫
(r′)nPn(cosα)ρ(r′) dτ ′

Where Pn are the Legendre polynomials, which are a system of complete and orthogonal polynomials (a
family of polynomials such that any two different polynomials in the sequence are orthogonal to each other
under some inner product).

The first term (n = 0) is the monopole contribution (it goes like 1/r); the second (n = 1) is the dipole (it
goes like 1/r2); the third is quadrupole; the fourth octopole; and so on.

3.4.2 The Monopole and Dipole Terms

Ordinarily, the multipole expansion is dominated (at large r) by the monopole term:

Vmon(r) =
1

4πε0

Q

r

The dipole moment of a distribution is given by:

p ≡
∫

r′ρ (r′)dτ ′

The electric dipole moment, is directed along the line from negative charge toward positive charge. They
also tend to point along the direction of the surrounding electric field.

This gives the following dipole contribution to the potential:

Vdip (r) =
1

4πε0

p · r̂
r2

3.4.3 Origin of Coordinates in Multipole Expansions

A point charge at the origin constitutes a “pure” monopole. If it is not at the origin, it’s no longer a pure
monopole.
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E&M Summary by Ellis de Wit

3.4.4 The Electric Field of a Dipole

So far we have worked only with potentials. Now we want the electric field; the electric field of a dipole is
given by:

Edip (r, θ) =
p

4πε0r3
(2 cos θ r̂ + sin θ θ̂)

The electric field of a (perfect) dipole can also be written in the coordinate-free form of

Edip(r) =
1

4πε0

1

r3
[3(p · r̂)r̂ − p]

4 Electric Fields in Matter

4.1 Polarization

4.1.1 Dielectrics

In dielectrics all charges are attached to specific atoms or molecules, they’re on a tight leash, and all they
can do is move a bit within the atom or molecule. Such microscopic displacements are not as dramatic as the
wholesale rearrangement of charge in a conductor, but their cumulative effects account for the characteristic
behavior of dielectric materials.

4.1.2 Induced Dipoles

When a neutral atom is placed in a (weak) electric field an equilibrium of forces is established. The two
opposing forces, E pulling the electrons and nucleus apart, their mutual attraction drawing them back
together, leave the atom polarized, with plus charge shifted slightly one way, and minus the other.

The atom now has a tiny (induced) dipole moment p, which points in the same direction as- and is propor-
tional to E.

p = αE

The constant of proportionality α is called atomic polarizability.

4.1.3 Alignment of Polar Molecules

Some molecules (polar molecules) have built-in, permanent dipole moments, when molecules as these are
put in an electric field they will experience a torque (there won’t experience a force, since F+ cancels out
F−).
Thus a dipole p = qd in a uniform field E experiences a torque

N = p×E

If the field is nonuniform, so that F+ does not exactly balance F−, there will be a net force on the dipole, in
addition to the torque. This is not ordinarily a major consideration in discussing the behavior of dielectrics,
but still important to know. The force will be given by:

F = (p · ∇)E

The energy of an ideal dipole p in an electric field E is given by

U = −p ·E

4.1.4 Polarization

Due to the (induced) dipole moments of neutral electrons and the torque on polar molecules a dielectric
material, that is placed in an electric field, will become polarized. A convenient measure of this effect is

P ≡ dipole moment per unit volume

which is called the polarization.
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4.2 The Field of a Polarized Object E&M Summary by Ellis de Wit

4.2 The Field of a Polarized Object

4.2.1 Bound Charges

The potential of a polarized object is given by:

V (r) =
1

4πε0

∮
S

σb
r da

′ +
1

4πε0

∫
V

ρb
r dτ

′

Where
σb ≡ P · n̂

is the potential of a surface charge, and
ρb ≡ −∇ ·P

is the potential of a volume charge.

4.3 The Electric Displacement

4.3.1 Gauss’s Law in the Presence of Dielectrics

Within the dielectric, the total charge density can be written as:

ρ = ρb + ρf

Where ρb is the bound charge and ρf is the free charge.

ε0∇ ·E = ρ

= ρb + ρf

= −∇ ·P + ρf

⇒ ∇ · (ε0E + P) = ρf

This gives the electric displacement:
D ≡ ε0E + P

In terms of D, Gauss’s law reads:

∇ ·D = ρf

∮
D · da = Qfenc

4.3.2 A Deceptive Parallel

Oooooh, exciting title

Okay, so D is not really the same as E and also

∇×D = ε0(∇×E) + (∇×P) = ∇×P

4.4 Linear Dielectrics

4.4.1 Susceptibility, Permittivity, Dielectric Constant

An important and common type of dielectrics are the linear dielectrics, their polarization is proportional to
the field:

P = ε0χeE

The constant of proportionality, ξe, is called the electric susceptibility of the medium (a factor of ε0 has been
extracted to make ξe dimensionless). The value of ξe depends on the microscopic structure of the substance
in question.
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E&M Summary by Ellis de Wit

In linear media we have:

D = ε0E + P

= ε0E + ε0χeE

= ε0(1 + χe)E

= εE

Where ε is the permittivity of the material, given by:

ε ≡ ε0(1 + χe)

= ε0εr

Where εr is the relative permittivity, or dielectric constant, of the material, given by:

εr ≡ 1 + χe =
ε

ε0

4.4.2 Energy in Dielectric Systems

If a capacitor is filled with linear dielectric, its capacitance exceeds the vacuumvalue by a factor of the
dielectric constant:

C = εrCvac

A general formula for the energy stored in any electrostatic system is:

W =
ε0
2

∫
E2dτ

The case of the dielectric-filled capacitor suggests that this should be changed to

W =
ε0
2

∫
εrE

2 dτ = W =
1

2

∫
D ·Ed τ

5 Magnetostatics

5.1 The Lorentz Force

5.1.1 Magnetic Fields

Two observations:

• a moving charge feels a force in magnetic field

• a moving charge creates a magnetic field

5.1.2 Magnetic Forces

The Lorentz force law is given by
Fmag = Q(v ×B)

In the presence of both electric and magnetic fields, the net force on Q would be

F = Q[E + (v ×B)]

This law can lead to some peculiar motions of a particle, as shown in the examples in the book.

One implication of the Lorentz force law deserves special attention:

Magnetic forces do no work.
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5.1 The Lorentz Force E&M Summary by Ellis de Wit

5.1.3 Currents

The current is the charge per unit time passing a given point. Units: Ampère = Coulomb
Second .

q− moving left = q+ moving right

Ordinarily the negatively charged electrons move in the direction opposite to the electric current.

A line charge λ traveling down a wire at speed v constitutes a current:

I = λv

The magnetic force on a segment of current-carrying wire is is given by:

Fmag =

∫
(v ×B) dq

=

∫
(v ×B)λ dl

=

∫
(I×B) dl

=

∫
I(dl×B)

Surface charge:

K ≡ dI

dl⊥

Where dl⊥ is the infinitesimal width of a ”ribbon” running parallel to the flow.
K is the current per unit width over a surface. If you have a charge density σ, then K = σ v.

Fmag =

∫
(v ×B) dq

=

∫
(v ×B)σ da

=

∫
(K×B) da

Volume current density:

J ≡ dI

da⊥

Where da⊥ is the infinitesimal cross section of a ”tube” running parallel to the flow.
J is the current per unit area over a volume. If you have a charge density ρ, then J = ρv.

Fmag =

∫
(v ×B) dq

=

∫
(v ×B)ρ dτ

=

∫
(J×B) dτ

Continuity equation:

∇J = −∂ρ
∂t

”Whatever current flows through a surface, must come at expense of what’s inside”.
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5.2 The Biot-Savart Law E&M Summary by Ellis de Wit

5.2 The Biot-Savart Law

5.2.1 Steady Currents

Electrostatics ⇔ Stationairy charges

Magnetostatics ⇔ Steady currents

5.2.2 The Magnetic Field of a Steady Current

The magnetic field of a steady line current is given by the Biot-Savart law:

B(r) =
µ0

4π

∫
I× r̂
r2 dl′

=
µ0

4π
I

∫
dl′ × r̂
r2

Some pointers about this equation:

• Integration along the path of the current, in the direction of the flow

• dl is an element of length along the wire

• r is the vector from the source point to the point of interest (r)

• µ0 = 4π × 10−7 N/A
2

is the permeability of free space

• The unit B is Tesla = N/A m

Since 2019 the definition of µ0 has changed; originally it was measured using quite a dumb setup and
was µ0 = 4π × 10−7 N/A

2
, now the definition of the coulomb is used and it has become: µ0 = 4π ·

1.00000000055(15)× 10−7 N/A
2
.

Since c = 1√
µ0ε0

, the actual value of ε0 also has changed.

For surface and volume currents, the Biot-Savart law becomes

B(r) =
µ0

4π

∫
K(r′)× r̂
r2 da′ and B(r) =

µ0

4π

∫
J(r′)× r̂
r2 dτ ′

5.3 The Divergence and Curl of B

5.3.1 Straight-Line Currents

(Intuitive approach)

We’re looking at a straight line steady current

B =
µ0I

2πs
φ̂

Integrate along a circle around the line current:∮
B · dl =

µ0I

2πs

∮
dl =

µ0I

2πs
2πs = µ0I

So this is independent of the radius s. This also holds generally, so let’s change to cylindrical coordinates:∮
B · dl =

µ0I

2π

∮
1

s
s dφ =

µ0I

2π

∫ 2π

0

dq = µ0I

15



5.3 The Divergence and Curl of B E&M Summary by Ellis de Wit

So again it’s the same, for two different case it becomes:

Loop the doesn’t enclose wire: Bundle of wires:∮
B · dl = 0

∮
B · dl = µ0Ienc

So the integral form of Ampère’s law is given by:∮
B · dl = µ0Ienc

Where Ienc =
∫

J · da, so:

µ0

∫
J · da =

∫
(∇×B) da

This gives the integral form differential version of Ampère’s law:

∇×B = µ0J

5.3.2 The Divergence of B

∇ ·B = 0

5.3.3 Ampère’s Law

Ampère’s law, as derived before, is given by:∮
B · dl = µ0Ienc ∇×B = µ0J

Ampère’s law is always true, but not always useful. It’s mainly useful for symmetric cases.

5.3.4 Magnetostatics vs. Electrostatics

Electrostatics:

∇ ·E =
1

ε0
ρ (Gauss’s law)

∇×E = 0 (No name)

This holds the same information as Coulomb’s law and superposition.
E→ 0 at ∞; E follows from these equations.

Magnetostatics

∇ ·B = 0 (No name)

∇×B = µ0J (Ampère’s law)

This holds the same information as the Biot-Savart-law and superposition.
B→ 0 at ∞; B follows from these equations.

Force
F = q(E + v ×B)
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5.4 Magnetic Vector Potential E&M Summary by Ellis de Wit

Direction

• E diverges away from a positive charge

– The field lines start at ⊕ and end at 	

• B curls around a current

– It has no beginning or end, because of this ∇ ·B = 0

– There are no point charges of B (so no monopoles)

It takes a moving charge to create a magnetic field and another moving charge to detect a magnetic field.

5.4 Magnetic Vector Potential

∇ ·B = 0 allows us to define:
B = ∇×A

Where A is the magnetic vector potential. For A we do have to satisfy the Maxwell’s equations:

∇ ·B = 0 ⇒ ∇ · (∇×A) = 0

∇×B = µ0J ⇒ ∇× (∇×A) = ∇(∇ ·A)−∇2A = µ0J

Can we make ∇(∇ ·A) zero? Yes, say: A = A0 +∇λ, then ∇ ·A = ∇ ·A0 +∇2λ.
So to get ∇ ·A = 0, we need ∇ ·A0 = −∇2λ.

This last equation looks like Poisson’s equation; ∇2V = − ρ
ε0

from which we got: V (r) = 1
4πε0

∫ ρ(r′)
r dτ ′

So we get:

λ =
1

4π

∫
∇ ·A0

r dτ ′

The equations we get from this in the end are:

∇ ·A = 0 ∇2A = µ0J A(r) =
µ0

4π

∫
J(r)

r dτ ′

For line and surface currents we get:

A =
µ0

4π

∫
I

r dl′ =
µ0I

4π

∫
1

r dl′ A =
µ0

4π

∫
K

r da′

5.4.1 Boundary Conditions
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E&M Summary by Ellis de Wit

5.4.2 Multipole Expansion of the Vector Potential

The multipole expansion of the vector potential looks like this:

A(r) =
µ0I

4π
[monopole + dipole + quadrupole + . . . ]

Monopole: for magnetic fields this is zero.

Dipole: The dipole is given by:

Adip(r) =
µ0

4π

m× r̂
r2

where m is the magnetic dipole moment:

m ≡ I
∫
da = Ia

Here a is the ”vector area” of the loop.

6 Magnetic Fields in Matter

6.1 Magnetization

If you would examine a magnetic material you would see that it is made up of a lot of magnetic dipoles.
Normally these dipoles cancel each other out, because of their random orientation. But when a magnetic
field is applied the dipoles will orient in the same direction and because of that the medium will become
magnetized. We know of a view different kinds of magnetization:

Paramagnets Magnetization parallel to B

Diamagnets Magnetization opposite to B

Ferromagnets Retain their magnetization after removal of B

6.1.1 Torques and Forces on Magnetic Dipoles

Just like an electric dipole in an electric field a magnetic dipole experiences torque in a magnetic field. The
torque on a rectangular current loop is given by:

N = m×B

Where m is the magnetic dipole moment of the loop. This torque causes dipoles to orient themselves parallel
to B and therefore this torque accounts for paramagnetism.

In an uniform field, the net force on a current loop is zero. But for an infinitesimal loop, with dipole moment
m, in an nonuniform field B, the force is:

F = ∇(m ·B)

6.1.2 Effect of a Magnetic Field on Atomic Orbits

The motion of an electron, in an orbit around a nucleus, also constitutes a magnetic dipole.
Current in loop:

I =
−e
T

= − ev

2πR

This gives:

m = −1

2
evRẑ
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We do have a torque on this dipole in there is a magnetic field present, but it’s hard to reorient the whole
orbit of the electron. However, the v of the electron will be changed. In the end this change, ∆v, causes a
change in the dipole moment:

∆m = −1

2
e(∆v)Rẑ = −e

2R2

4me
B

Important to notice is that this change in the dipole moment is in the opposite direction of the magnetic
field. So due to the magnetic field all dipole moments due to the orbit of the electrons align anti-parallel to
the field. Thus this mechanism is responsible for diamagnetism.

6.1.3 Magnetization

M ≡ magnetic dipole moment per unit volume

6.2 The Field of a Magnetized Object

The magnetic potential can be represented by two terms, namely:

i due to a bound volume current:
Jb = ∇×M

the curl of the magnetization

ii due to a bound surface current
Kb = M× n̂

Using these definitions the magnetic potential can be defined as:

A(r) =
µ0

4π

∫
V

Jb(r′)

r dτ ′ +
µ0

4π

∮
S

Kb(r′)

r da′

6.3 The Auxiliary Field, H

Combine the field due to the bound current (due to the magnetization) and the field due to all other current
(free current).

J = Jb + Jf

Rewriting Ampère’s law gives:

Jfree = ∇×
(

B

µ0
−M

)
≡ ∇×H

The integral form of this is given by: ∮
H · dl = Ifree,enclosed

6.4 Linear and Nonlinear Media

6.4.1 Magnetic Susceptibility and Permeability

M = χmH

This is true for a lot of substances, where χm is the magnetic susceptibility, typically it has values in the
order of 10−5.

Since H = B
µ0
−M we get:

B = µ0(H + M)

= µ0(H + χmH)

= µ0(1 + χm)H

= µH

Where µ = µ0(1 + χm) is the permeability of the material.
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6.4.2 Ferromagnetism

Domains: small patches of material, where dipoles are aligned, due to interaction (found in ferromagnetic
materials).
Without an external field, the m of the domains will be randomly oriented, but with an external field the
aligned domains grow and this leads to a net magnetization. This magnetization can remain after switching
off the field.

How does this work? When you put for example a piece of iron in a strong magnetic field the boundaries
of the domains will be moved, when one domain takes over entirely the iron is said to be saturated. Then
when the magnetic field is turned off, some domains will return to being random, but most will stay in the
original direction.

This electric field can for example be created using a coil of wire wrapped around the object you want to
turn into a magnet and this process can be visualized using a hysteresis loop:

7 Electrodynamics

7.1 Electromotive Force

7.1.1 Ohm’s Law

The current density J is proportional to the force per unit charge f , this gives:

J = σf = σ
F

q

Where σ =
[

1
Ω·m

]
is the conductivity, σ = 0 is a perfect insulator and σ =∞ is a perfect conductor.

The resistivity is given by ρ = 1
σ , here ρ = 0 is a perfect conductor and ρ =∞ is a perfect insulator.

We know that the Lorentz force per charge is f = E + v ×B, which gives:

J = σ(E + v ×B)

quite often v is so small that the second term can be ignored:

J = σE

Example 7.1 and 7.2 lead to the familiar version of Ohm’s law, where the total current flowing from one
electrode to another is proportional to the potential difference (resistance) between them:

V = IR

The Joule heating law is given by:
P = V I = I2R
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7.1.2 Electromotive Force

Charges in a current loop are being moved around. This is impossible in an electrostatic field, because this
is a conservative field, i.e. ∇×E = 0. The work done per unit charge to push it through the loop:

ε =

∮
F

q
· dl

=

∮
f · dl

=

∮
(E + fsource) · dl

=

∮
fsource · dl

This is the electromotive force or emf. The emf is the path integral of the force needed to move around a
unit charge. So actually, the emf is the work done per unit charge, by the external source in volts.

There are a lot of sources of emf, a couple of examples are:

• Van de Graaf generator

• Electrochemical cells

• Solar cells

• Thermoelectric devices

• Electrical generators (motional emf)

7.1.3 Motional emf

Motional emfs arise when you move a wire through a magnetic field. Generators exploit these emfs to
generate electricity.
The universal flux rule for motional emfs is given by:

Whenever (and for whatever reason) the magnetic flux through a loop changes, an emf

ε = −dΦ

dt

will appear in th loop.

What is nice about this rule is that it applies to all loops moving in arbitrary directions through nonuniform
fields, the loop doesn’t even have to maintain it’s shape!

Eddy currents are currents that will be generated in a material (metal) if it is moved around in a nonuniform
magnetic field and they will cause you to feel a kind of ”vicious drag” when moving the material around.

7.2 Electromagnetic Induction

7.2.1 Faraday’s Law

Before we talk about our main guy Faraday, I want to introduce Lenz’s law, which is a nice addition to the
flux rule:

Nature abhors a change in flux

Faraday also came up with a nice little rule:

A changing magnetic field induces an electric field

21



7.3 Maxwell’s Equations E&M Summary by Ellis de Wit

Faraday’s little rule gives Faraday’s law:∮
E · dl = −

∫
∂B

∂t
· da ∇×E = −∂B

∂t

in integral and differential form.

7.2.2 The Induced Electric Field

Faraday induced magnetic fields are determined by −∂B∂t :

E = − 1

4π

∫
(∂B/∂t)× r̂

r2 dτ = − 1

4π

∂

∂t

∫
B× r̂
r2 dτ

7.2.3 Inductance

If you have two closed loops above each other (1 being the lower one an 2 being the top one) and run a
steady current I1 through 1, there will be a magnetic flux going through loop 2 which is proportional to the
current as:

Φ2 = M12I1

Where M12 is the mutual inductance given by:

M12 =
µ0

4π

∮ ∮
dl1 · dl2
r

This is known as the Neumann formula, it teaches us 2 things about mutual inductance:

i M12 is a purely geometrical quantity, having to do with the sizes, shapes, and relative positions of the
two loops.

ii The integral is unchanged if we switch the roles of loops 1 and 2; it follows that:

M12 = M21

7.2.4 Energy in Magnetic Fields

It takes a certain amount of energy to start a current flowing in a circuit, if we start with zero current and
build it up to a final value I, the work done is

W =
1

2
LI2

The energy ”stored in the magnetic field” is given by:

W =
1

2

∫
V

(A · J) dτ =
1

2µ0

∫
all space

B2 dτ

7.3 Maxwell’s Equations

7.3.1 Electrodynamics Before Our Hero Maxwell

We know the following laws:

∇ ·E =
1

ε0
ρ (Gauss’s law),

∇ ·B = 0 (no name),

∇×E = −∂B

∂t
(Faraday’s law),

∇×B = µ0J (Ampère’s law).

Due to a weird paradox it seems that Ampère’s law isn’t totally right, this is where our hero Maxwell comes
in.
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7.3.2 How Our Hero Maxwell Fixed Ampère’s Law and Saved Physics

To fix Ampère’s law an extra term was added, the displacement current:

Jd ≡ ε0
∂E

∂t

This gives:

∇×B = µ0(J + Jd) = µ0J + µ0ε0
∂E

∂t

This added term also introduces the following statement:

A changing electric field induces a magnetic field

7.3.3 Our Hero Maxwell’s Equations (Which Are Totally Awesome)

Maxwell’s equations are thus given by:

∇ ·E =
1

ε0
ρ (Gauss’s law),

∇ ·B = 0 (no name),

∇×E = −∂B

∂t
(Faraday’s law),

∇×B = µ0J + µ0ε0
∂E

∂t
(Ampère’s law with Maxwell’s correction).

In integral form they are given by:∮
E · da =

1

ε0
Qenc (Gauss’s law),∮

B · da = 0 (no name),∮
E · dl = − ∂

∂t

∫
S

B · da (Faraday’s law),∮
B · dl = µ0Ienc + µ0ε0

∂

∂t

∮
E · da (Ampère’s law with Maxwell’s correction).

7.3.4 Magnetic Charge

Maxwell’s equations have a nice symmetry and seem to beg for magnetic charge to exist, but they don’t. As
the book puts it ”apparently God just didn’t make any magnetic charge”.

7.3.5 (Our Hero) Maxwell’s equations in Matter

Maxwell’s equations in vacuum are good and all, but here in real life we also have to deal with materials, so
now we’re going to take a look at Maxwell’s equations in matter.
In matter the charge density can be separated into two parts:

ρ = ρf + ρb

From the static case we know: ρb = −∇ ·P

⇒ ρ = ρf −∇ ·P

Therefore we can write Gauss’s law as:

∇ ·E =
1

ε0
(ρf −∇ ·P)
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or
∇ ·D = ρf

With D = ε0E + P, as in the static case.

In matter the current density can be separated into two parts:

J = Jf + Jb + Jp

From the static case we know: Jb = ∇×M, but Jp is a new feature that appears in the nonstatic case. This
polarization current is caused by that any change in the electric polarization involves a flow of (bound)
charge, which must be included in the total current. This gives:

Jp =
∂P

∂t

Thus J = Jf +∇×M + ∂P/∂t, with this Ampère’s law becomes

∇×B = µ0

(
Jf +∇×M +

∂P

∂t

)
+ µ0ε0

∂E

∂t

or

∇×H = Jf +
∂D

∂t

Where H = 1
µ0

B−M

In terms of free charges and currents, then, Maxwell’s equations read:

(i) ∇ ·D = ρf , (iii) ∇×E = −∂B

∂t
,

(ii) ∇ ·B = 0, (iv) ∇×H = Jf +
∂D

∂t
.

The second term from (iv) is called the displacement current:

Jd =
∂D

∂t

8 Conservation Laws

8.1 Charge and Energy

8.1.1 The Continuity Equation

The continuity equation is given by:
∂ρ

∂t
= −∇ · J

It represents the local conservation of charge; If the charge in some region changes, then exactly that amount
of charge must have passed in or out through the surface.

8.1.2 Poynting’s Theorem

The work required to assemble a static charge distribution is: The work required to get currents going is:

We =
ε0
2

∫
E2 dτ Wm =

1

2µ0

∫
B2 dτ
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This suggests that the total energy stored in electromagnetic fields, per unit volume, is

u =
1

2

(
ε0E

2 +
1

µ0
B2

)
Suppose we have some charge and current configuration which, at time t, produces fields E and B. In the next
instant, dt, the charges move around a bit. The amount of work, dW , that is done by the electromagnetic
forces acting on these charges, in the interval dt is given by:

dW

dt
= − d

dt

∫
V

1

2

(
ε0E

2 +
1

µ0
B2

)
dτ − 1

µ0

∮
S

(E×B) · da

Where S is the surface bounding V. This is known as Poynting’s theorem. The first integral is an old
result, it is the total energy stored in the fields. The second term represents the the rate at which energy is
transported out of V. Poynting’s vector in words would be:

The work done on the charges by the electromagnetic force is equal to the decrease in energy remaining in
the fields, less the energy that flowed out through the surface.

The energy per unit time, per unit area, transported by the fields is called the Poynting vector:

S ≡ 1

µ0
(E×B)

You can also see S as the energy flux density.

8.2 Momentum

8.2.1 Newton’s Third Law in Electrodynamics

An important thing to note is:

In electrostatics and magnetostatics the third law of Newton holds, but in electrodynamics it does not.

If the third law doesn’t hold, the conservation of momentum won’t be able to hold, but momentum conser-
vation is rescued, in electrodynamics, by the realization that the fields themselves carry momentum.

8.2.2 Maxwell’s Stress Tensor

All forces on a moving charge are given by:

With:
F = q(E + v ×B)

All forces on a moving distribution of charges are given by:
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Here:

F =

∫
V

(ρE + J×B) dτ

and the force per unit volume is:

f =ρE + J×B

= ε0

[
(∇ ·E) E + (E · ∇) E− 1

2
∇
(
E2
)]

+
1

µ0

[
(∇ ·B) B + (B · ∇) B− 1

2
∇
(
B2
)]
− ε0

∂

∂t
(E×B)

= ε0

[
(∇ ·E) E + (E · ∇) E− 1

2
∇
(
E2
)]

+
1

µ0

[
(∇ ·B) B + (B · ∇) B− 1

2
∇
(
B2
)]
− ε0µ0

∂

∂t
S

From this we get:

F =

∫
V

f dτ and
dp

dt
= F

This thing is not particular pretty, so we want to introduce the Maxwell stress tensor. The tensor is a
matrix made up of elements defined by:

Tij ≡ ε0
(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
Notice:

• i, j = x, y, z

• E2 = E2
x + E2

y + E2
z and B2 = B2

x +B2
y +B2

z

• δij =

{
1, if i = j,

0, if i 6= j.

• Tij = Tji

• Tij is the force (per unit area) in the ith direction acting on an element of surface oriented in the jth
direction

– ”diagonal” elements (Txx , Tyy, Tzz) represent pressures
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– “off-diagonal” elements (Txy, Txz, etc.) are shears

(
∇ ·
←→
T
)
j

= ε0

[
(∇ ·E) E + (E · ∇) E− 1

2
∇
(
E2
)]

+
1

µ0

[
(∇ ·B) B + (B · ∇) B− 1

2
∇
(
B2
)]

Thus the force per unit volume is given by:

f = ∇ ·
←→
T − ε0µ0

∂S

∂t

And the total electromagnetic force on the charges in V is

F =

∮
S

←→
T · da− ε0µ0

d

dt

∫
V

S dτ

In the static case the second term drops out, and the electromagnetic force on the charge configuration can
be expressed entirely in terms of the stress tensor at the boundary

8.2.3 Conservation of Momentum

We know that dpmech

dt = F, thus:

dpmech

dt
=

∮
S

←→
T · da− ε0µ0

d

dt

∫
V

S dτ

where pmech is the (mechanical) momentum of the particles in volume V. Here the first integral represents
the momentum per unit time flowing in through the surface. The second integral represents momentum
stored in the fields:

p = ε0µ0
d

dt

∫
V

S dτ

The equation for dpmech

dt is the statement of conservation of momentum in electrodynamics: If the mechanical
momentum increases, either the field momentum decreases, or else the fields are carrying momentum into
the volume through the surface. The momentum density in the fields is given by:

g = µ0ε0S = ε0 (E×B)

This also gives rise to:
∂g

∂t
= ∇ ·

←→
T

Which is the “continuity equation” for electromagnetic momentum.

9 Electromagnetic Waves

9.1 Waves in One Dimension

9.1.1 The Wave Equation

A basic definition of a wave could be: a wave is a disturbance of a continuous medium that propagates with
a fixed shape at constant velocity. This definition immediately has exceptions, but we want to start with a
basic simple case.

Suppose a wave is generated by shaking one end of a taut string; f(z, t) represents the displacement of the
string at the point z, at time t. The initial shape of the string is given by: g(z) ≡ f(z, 0). The form of f(z, t)
is given by:

f(z, t) = f(z − vt, 0) = g(z − vt)
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Here the special combination z−vt is very important, because if f depends on that combination f represents
a wave of fixed shape traveling in the z direction at speed v.

The (classical) wave equation (in one dimension) is given by:

∂2f

∂z2
=

1

v2

∂2f

∂t2

Where the speed of propagation, v, is

v =

√
T

µ

The wave equation admits as solutions all functions of the form f(z, t) = g(z − vt) or f(z, t) = h(z + vt).
Here g(z − vt) represents a wave propagating to the right and h(z + vt) represents a wave propagating to
the left. Superposition of these two waves gives the most general solution to the wave equation:

f(z, t) = g(z − vt) + h(z + vt)

9.1.2 Sinusoidal Waves

Terminology. Of course everyones favorite possible wave form is the sinusoidal one, given by:

f(z, t) = A cos [k(z − vt) + δ]

= A cos [kz − ωt+ δ]

Some terms found in this form are:

Amplitude A the maximum displacement from the equilibrium

Phase k(z − vt) + δ i.e. the argument of the cosine

Central maximum k(z − vt) + δ = 0 ⇒ z =
vt− δ
k

Wave number k [m-1, cm-1]

Phase constant δ (0 ≤ δ ≤ 2π)

Wavelength λ =
2π

k
[nm, mm, cm, m, ...]

Period T =
2π

kv
one full cycle in time, [s]

Frequency ν =
1

T
=
v

λ
[Hz]

Angular frequency ω = 2πν = kv [rad/s]

Complex notation. We know that Euler’s formula gives:

eiθ = cos θ + i sin θ
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Then the sinusoidal wave can be written as:

f(z, t) = Re
{
Aei(kz−ωt+δ)

}
Where Re denotes only the real part of the wave. This lets us introduce the complex wave function,
because we really wanted that :

f̃(z, t) ≡ Ãei(kz−ωt)

with the complex amplitude Ã ≡ Aeiδ, then:

f(z, t) = Re
{
f̃(z, t)

}
Linear combinations of sinusoidal waves. Any wave can be expressed as a linear combination/ super-
position of sinusoidal ones:

f̃(z, t) =

∫ ∞
−∞

Ã(k)ei(kz−ωt) dk

Therefore if you know how sinusoidal waves behave, you know in principle how any wave behaves.

9.2 Electromagnetic Waves in Vacuum

9.2.1 The Wave Equation for E and B

In regions of space where there is no charge or current, Maxwell’s equations are given by:

(i) ∇ ·E = 0 (iii) ∇×E = −∂B

∂t

(ii) ∇ ·B = 0 (iv) ∇×B = µ0ε0
∂E

∂t

Applying the curl to (iii) and (iv) gives:

∇× (∇×E) = ∇(∇ ·E)−∇2E ∇× (∇×B) = ∇(∇ ·B)−∇2B

= ∇×
(
−∂B

∂t

)
= ∇×

(
µ0ε0

∂E

∂t

)
= − ∂

∂t
(∇×B) = µ0ε0

∂

∂t
(∇×E)

= −µ0ε0
∂2E

∂t2
= −µ0ε0

∂B

∂t

Therefore, because ∇ ·E = 0 and ∇ ·B = 0:

∇2E = µ0ε0
∂2E

∂t2
∇2B = µ0ε0

∂B

∂t

Both of these equations satisfy the three dimensional wave equation:

∇2f =
1

v2

∂2f

∂t2

Where

v =
1

√
ε0µ0

= c
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9.2.2 Monochromatic Plane Waves

Plane waves are waves that travel in the z-direction and have no x- or y-dependence, they are given by the
one-dimensional wave equation. Monochromatic waves are waves with a single frequency ω. So together;
monochromatic plane waves are sinusoidal waves as given by:

Ẽ(z, t) = Ẽ0 e
i(kz−ωt) B̃(z, t) = B̃0 e

i(kz−ωt)

Some properties of EM waves are:

i EM waves propagate in vacuum with the velocity of light c

ii E, B and the direction of propagation are mutually perpendicular

(a) EM waves are transverse

(b) E and B are mutually perpendicular

iii E and B oscillate in phase

iv The amplitudes of E and B are related as B0 = E0/c

The generalization of the monochromatic plane waves traveling in an arbitrary direction are given by:

Ẽ(r, t) = Ẽ0 e
i(k·r−ωt)n̂

B̃(r, t) =
1

c
Ẽ0 e

i(k·r−ωt)(k̂ × n̂) =
1

c
k̂ × Ẽ

Where k is the propagation (or wave) vector pointing in the direction of propagation and n̂ is the polarization
vector.

9.2.3 Energy and Momentum in Electromagnetic Waves

The energy per unit volume in electromagnetic fields is

u =
1

2

(
ε0E

2 +
1

µ0
B2

)
The average energy density stored in electromagnetic fields is given by:

〈u〉 =
1

2
ε0E

2
0

The energy flux density (energy per unit area, per unit time) transported by the fields is given by the
Poynting vector:

S =
1

µ0
(E×B)

The average energy flux density (energy per unit area, per unit time) transported by the fields into the
z-direction:

〈S〉 =
1

2
cε0E

2
0 ẑ

The average momentum density stored in EM fields is given by:

〈g〉 =
1

2c
ε0E

2
0 ẑ

The average power per unit area transported by an electromagnetic wave is called the intensity:

I ≡ 〈S〉 =
1

2
cε0E

2
0

The radiation pressure (average force per unit area) is:

P =
F

A
=

1

A

∆p

∆t
=

1

A

〈g〉Ac∆t
∆t

=
1

2
ε0E

2
0 =

I

c
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9.3 Electromagnetic Waves in Matter

9.3.1 Propagation in Linear Media

Inside matter, but in regions where there is no free charge or free current, Maxwell’s equations become

(i) ∇ ·D = 0, (iii) ∇×E = −∂B

∂t
,

(ii) ∇ ·B = 0, (iv) ∇×H =
∂D

∂t
.

If the medium is linear,

D = εE, H =
1

µ
B,

and homogeneous (so ε and µ do not vary from point to point), they reduce to

(i) ∇ ·E = 0, (iii) ∇×E = −∂B

∂t
,

(ii) ∇ ·B = 0, (iv) ∇×B = µε
∂E

∂t
.

This gives that electromagnetic waves propagate through a linear homogeneous medium at a speed

v =
1
√
εµ

=
c

n

Where the index of refraction is

n ≡
√

εµ

ε0µ0
('
√
εr for most materials)

Now the energy density is given by:

u =
1

2

(
εE2 +

1

µ
B2

)
, the Poynting vector is

S =
1

µ
(E×B)

, and the intensity is

I =
1

2
εvE2

0

. When a wave passes from one transparent medium into another we expect to get a reflected wave and a
transmitted wave, the details depend on the exact nature of the electrodynamic boundary conditions:

(i) ε1E
⊥
1 = ε2E

⊥
2 , (iii) E

‖
1 = E

‖
2

(ii) B⊥1 = B⊥2 , (iv)
1

µ1
B
‖
1 =

1

µ2
B
‖
2.

9.3.2 Reflection and Transmission at Normal Incidence

A plane wave of frequency ω, traveling in the z direction and polarized in the x direction, approaches the
interface formed by the xy plane from the left:

ẼI(z, t) = Ẽ0I
ei(k1z−ωt)x̂

B̃I(z, t) =
1

v1
Ẽ0I

ei(k1z−ωt)ŷ
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It gives rise to a reflected and a transmitted wave:

ẼR(z, t) = Ẽ0R
ei(−k1z−ωt)x̂ ẼT(z, t) = Ẽ0T

ei(k2z−ωt)x̂

B̃R(z, t) = − 1

v1
Ẽ0R

ei(−k1z−ωt)ŷ B̃T(z, t) =
1

v2
Ẽ0T

ei(k2z−ωt)ŷ

At z = 0, the combined fields on the left, ẼI + ẼR and B̃I + B̃R, must join the fields on the right, ẼT and
B̃T, in accordance with the boundary conditions. In the end these boundary conditions give the ratio of the
reflected intensity to the incident intensity:

R ≡ IR
II

=

(
E0R

E0I

)2

=

(
n1 − n2

n1 + n2

)2

and the ratio of the transmitted intensity to the incident intensity:

T ≡ IT
II

=
ε2v2

ε1v1

(
E0T

E0I

)2

=
4n1n2

(n1 + n2)2

R is called the reflection coefficient and T the transmission coefficient; they measure the fraction of
the incident energy that is reflected and transmitted, respectively. Notice that

R+ T = 1

since conservation of energy is still a thing, lol.

9.3.3 Reflection and Transmission at Oblique Incidence

Next reflection and transmission at oblique angles will be considered. Here the incoming wave meets the
boundary at an arbitrary angle θI . Suppose we have the incoming monochromatic plane wave

ẼI(r, t) = Ẽ0I
ei(kI·r−ωt), B̃I(r, t) =

1

v1
(k̂I × ẼI)

approaching from the left giving us the reflected and transmitted waves:

ẼR(r, t) = Ẽ0R
ei(kR·r−ωt), B̃R(r, t) =

1

v1
(k̂R × ẼR)

ẼT(r, t) = Ẽ0T
ei(kT·r−ωt), B̃T(r, t) =

1

v2
(k̂T × ẼT)

All three waves have the same frequency ω, this is decided by the light source. The waves are related to each
other by the boundary conditions given before. All these boundary conditions have the same structure,

() ei(kI·r−ωt) + () ei(kR·r−ωt) = () ei(kT·r−ωt), at z = 0

From this can be concluded that

kI · r = kR · r = kT · r, when z = 0,

or,

x(kI)x + y(kI)y = x(kR)x + y(kR)y = x(kT )x + y(kT )y.

Or

y(kI)y = y(kR)y = y(kT )y if x = 0

x(kI)x = x(kR)x = x(kT )x if y = 0

This also implies that
kI sin θI = kR sin θR = kT sin θT

where θI is the angle of incidence, θR is the angle of reflection and θT is the angle of refraction.
These last three conclusions the three fundamental laws of geometrical optics.
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First Law: The incident, reflected, and transmitted wave vectors form a plane (called the plane of inci-
dence), which also includes the normal to the surface.

Second Law: The angle of incidence is equal to the angle of reflection,

θI = θR

This is also known as the law of reflection.

Third Law:
sin θT
sin θI

=
n1

n2

This is the law of refraction, or Snell’s law. Then, by looking at the boundary conditions, we can
find Fresnel’s equations, which give the reflected and transmitted amplitudes in terms of the incident
amplitude. In the case where the polarization is parallel to the plane of incidence the two Fresnel equations
are

Ẽ0R
=

(
α− β
α+ β

)
Ẽ0I

Ẽ0T
=

(
2

α+ β

)
Ẽ0I

and in the case where the polarization is perpendicular to the plane of incidence the two Fresnel equations
are

Ẽ0R
=

∣∣∣∣1− αβ1 + αβ

∣∣∣∣Ẽ0I
Ẽ0T

=

(
2

1 + αβ

)
Ẽ0I

In both cases α and β are given by:

α ≡ cos θT
cos θI

β ≡ µ1v1

µ2v2
=
µ1n2

µ2n1

In both cases the transmitted wave is always in phase with the incident one. For the parallel case the
reflected wave is in phase if α > β and is 180o out of phase is α < β. For the perpendicular case the reflected
wave is in phase if αβ < 1 and is 180o out of phase is αβ > 1.

An interesting case that occurs when α = β is called Brewster’s angle, at this angle, θB , the reflected wave
is completely extinguished. This angle also has a nice relation to the indices of refraction:

tan θB ∼=
n2

n1

The intensities are given by:

II =
1

2
ε1v1E

2
0I

cos θI IR =
1

2
ε1v1E

2
0R

cos θR IT =
1

2
ε2v2E

2
0T

cos θT

This gives the following for the reflection and transmission coefficients (for the parallel case):

R ≡ IR
II

=

(
α− β
α+ β

)2

T ≡ IT
II

= αβ

(
2

α+ β

)2
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10 Potentials and Fields

10.1 The Potential Formulation

10.1.1 Scalar and Vector Potentials

Let’s once again look at our favorite Maxwell’s equations

(i) ∇ ·E =
1

ε0
ρ (iii) ∇×E = −∂B

∂t

(ii) ∇ ·B = 0 (iv) ∇×B = µ0J + µ0ε0
∂E

∂t

In electrostatics we were able to write E as the gradient of the scalar potential: E = −∇V . In electrodynamics
this isn’t possible, due to the curl of E being nonzero. But the divergence of B is still zero, so we can still
write

B = ∇×A.

Putting this into Faraday’s law (iii) and doing some computations yields:

E = −∇V − ∂A

∂t

This potential representation of course fulfills equations (i) and (iii), since it was derived from these two
equations. Putting the potential representation for E into equation (i) gives

∇2V +
∂

∂t
(∇ ·A) = − 1

ε0
ρ.

This equation replaces Poisson’s equation. Putting the potential representations into (iv) gives(
∇2A− µ0ε0

∂2A

∂t2

)
−∇

(
∇ ·A + µ0ε0

∂V

∂t

)
= −µ0J

10.1.2 Gauge Transformations

Extra conditions can be placed on V and A, as long as nothing happens to E and B, this is called gauge
freedom. We find that

A′ = A +∇λ,

V ′ = V − ∂λ

∂t
.

Where λ(r, t) is a scalar fiction. This means that for any scalar function λ(r, t), we can add ∇λ to A,
provided we can simultaneously subtract ∂λ/∂t from V . These changes in V and A are called gauge
transformations and they can be used to clean up the last two equations form the previous section.

10.1.3 Coulomb Gauge and Lorenz Gauge

Next we will look at two specific gauge transformations.

The Coulomb Gauge. For the Coulomb gauge we choose

∇ ·A = 0,

this gives

∇2V = − 1

ε0
ρ

∇2A− µ0ε0
∂2A

∂t2
= −µ0J + µ0ε0∇

(
∂V

∂t

)
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Here we recognize the first equation as Poisson’s equation which we know how to solve, this gives

V (r, t) =
1

4πε0

∫
ρ(r′, t)

r dτ ′.

This is the advantage of the Coulomb gauge; the scalar potential is particularly easy to calculate. The
disadvantage is that A is particularly difficult to calculate.

The Lorentz Gauge. For the Lorentz gauge we choose

∇ ·A = −µ0ε0
∂V

∂t

This gives

(i) �2V = − 1

ε0
ρ

(ii) �2A = −µ0J

Where the d’Alembertian is given by

�2 ≡ ∇2 − µ0ε0
∂2

∂t2

These are the inhomogeneous wave equations for V and A. When using the Lorentz gauge the whole of
electrodynamics reduces to the problem of solving the inhomogeneous wave equation for a specified source.

10.2 Continuous Distributions

10.2.1 Retarded Potentials

In the static case the above found equations reduce to

∇2V = − 1

ε0
ρ ∇2A = −µ0J

These have the following solutions

V (r) =
1

4πε0

∫
ρ(r′)

r dτ ′, A(r) =
µ0

4π

∫
J(r′)

r dτ ′.

But r is the distance from the source point r′ to the field point r and electromagnetic messages travel with
the speed of light. Therefore in the non-static case we aren’t interested in the status of the source right now,
but that at some earlier time tr called the retarded time.

tr ≡ t−
r
c

Then in the non-static case we get

V (r, t) =
1

4πε0

∫
ρ(r′, tr)

r dτ ′, A(r, t) =
µ0

4π

∫
J(r′, tr)

r dτ ′.

These are called the retarded potentials. These retarded potentials can be mathematically proven by
showing they satisfy the inhomogeneous wave equations, but I’m not gonna type that out. I’m lazy, deal
with it. It is also important to note that this logic doesn’t work for the electric fields.

This logic, and the proof following from it, can also be applied to the advanced potentials,

Va(r, t) =
1

4πε0

∫
ρ(r′, ta)

r dτ ′, Aa(r, t) =
µ0

4π

∫
J(r′, ta)

r dτ ′.

in which we evaluate the charge and current densities at the advanced time

ta ≡ t+
r
c

Mathematically and theoretically speaking these advanced potentials can be of some interest, but because
of the principle of causality they have no direct physical significance.
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10.2.2 Jefimenko’s Equations

Since we now know the retarded potentials, we can determine the fields E and B from them. These equations
for the fields are known as Jefimenko’s equations and are given by

E(r, t) =
1

4πε0

∫ [
ρ(r′, tr)

r2 r̂+
ρ̇(r′, tr)

cr r̂− J̇(r′, tr)

c2r

]
dτ ′,

B(r, t) =
µ0

4π

∫ [
J(r′, tr)

r2 r̂+
J̇(r′, tr)

cr r̂
]
× r̂ dτ ′.

11 Radiation

11.1 Dipole Radiation

11.1.1 What is Radiation

When charges accelerate, their fields can transport energy irreversibly out to infinity – a process we call
radiation.

Imagine a gigantic sphere, out at radius r. The power passing through its surface is the integral of the
Poynting vector:

P (r, t) =

∮
S · da =

1

µ0

∮
(E×B) · da

This energy actually left the source at the earlier time t0 = t− r/c, this gives that the power radiated is

Prad = lim
r→∞

P
(
r, t0 +

r

c

)
The area of the sphere is 4πr2, so for radiation to occur the Poynting vector must decrease slower than 1/r2.
In electro- and magnetostatics the electric and magnetic fields fall of like 1/r2, from that follows that the
Poynting vector then falls of with 1/r4. Therefore static sources do not radiate.

Jefimenko’s equations indicate that time-dependent fields include terms that go like 1/r; these are the terms
that are responsible for electromagnetic radiation.

11.1.2 Electric Dipole Radiation

Consider a dipole consisting of two tiny metal spheres separated by a distance d and connected by a fine
wire. At time t the charge on the upper sphere is q(t) and on the lower sphere it is −q(t) and this charge is
driven back and forth trough the wire creating an oscillating dipole

q(t) = q0 cos (ωt), p(t) = p0 cos (ωt)ẑ.

Here ω is the angular frequency and p0 ≡ q0d is the maximum value of the dipole moment.

To simplify the retarded potential, we make three approximations:

i d� r,
we want the separation distance to be extremely small, this converts the physical dipole into a perfect
dipole.

ii d� c/ω (or d� λ),
the dipole size is much smaller than the wavelength.

iii r� c/ω (or r � λ),
we are interested in the fields that survive at large distances from the source, in the so-called radiation
zone.
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This gives us a simplified retarded potential of

V (r, θ, t) = − p0ω

4πε0c

(
cos θ

r

)
sin [ω(t− r/c)]

The vector potential is determined by the current flowing in the wire and is found to be

A(r, θ, t) = −µ0p0ω

4πr
sin [ω(t− r/c)]ẑ

From these two potentials the electric and magnetic fields can of course be found.

E = −∇V − ∂A

∂t
B = ∇×A

= −µ0p0ω
2

4π

(
sin θ

r

)
cos [ω(t− r/c)]θ̂ = −µ0p0ω

2

4πc

(
sin θ

r

)
cos [ω(t− r/c)]φ̂

These two equations represent monochromatic waves of frequency ω traveling in the radial direction at the
speed of light. Well... These are actually spherical waves, not plane waves, and their amplitude decreases
like 1/r as they progress. But for large r, they are approximately plane over small regions, just as the surface
of the earth is reasonably flat, locally.

The energy radiated by an oscillating electric dipole is determined by the Poynting vector:

S(r, t) =
1

µ0
(E×B)

=
µ0

c

(
p0ω

2

4π

(
sin θ

r

)
cos [ω(t− r/c)]

)2

r̂.

The intensity is obtained by averaging (in time) over a complete cycle:

〈S〉 =

(
µ0p

2
0ω

4

32π2c

)
sin2 θ

r2
r̂.

There is no radiation along the axis of the dipole; the intensity profile takes the form of a donut, with its
maximum in the equatorial plane. The total power radiated is found by integrating 〈S〉 over a sphere of
radius r:

〈P 〉 =

∫
〈S〉 · da

=
µ0p

2
0ω

4

32π2c

∫
sin2 θ

r2
r2 sin θ dθ dφ

=
µ0p

2
0ω

4

12πc

Larmor formula We know that the energy radiated by an oscillating electric dipole is

S(r, t) =
µ0

c

(
p0ω

2

4π

(
sin θ

r

)
cos [ω(t− r/c)]

)2

r̂.

The power passing through a surface of small radius r is:

P (r, t) =

∮
S(r, t) · da

∼=
µ0

16π2c
ω4p2

0 cos2(ωt)

∫
sin2 θ

r2
r2 sin θ dθ dφ

=
µ0

16π2c
ω4p2

0 cos2(ωt) · 2π 4

3

⇒ P (t) ≈ µ0

6πc
ω4p2

0 cos2(ωt)
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Then suppose we have an oscillating dipole moment:

p(t) = p0 cos(ωt) p̈(t) =
d2p

dt2
= −ω2p0 cos(ωt)

So then
P = P (t) ≈ µ0

6πc
ω4p2

0 cos2(ωt) =
µ0

6πc
(p̈)2

Then suppose we have a single point charge q with the position d(t) with respect to the origin, then we get

p(t) = qd(t), p̈ = qa(t).

Where a(t) is the acceleration of the charge. Plugging this into the equation for the radiated power gives us

P =
µ0q

2a2

6πc

This is the Larmor formula, which is used to calculate the total power radiated by a non relativistic point
charge as it accelerates. Notice that the power radiated by a point charge is proportional to the square of
its acceleration.

12 Electrodynamics and Relativity

12.1 The Special Theory of Relativity

12.1.1 Einstein’s Postulates

Now we are gonna do some relativity, how fun! Classical mechanics obeys the principle of relativity: the
same laws apply in any inertial reference frame. An ”inertial” frame of reference is a system which moves
with constant velocity with a rectilinear motion.

Of course we already know everything about special relativity, but the big question is whether the principle
of relativity also applies to the laws of electrodynamics? Well, at first there was some confusion about
that, after all a charge in motion produces a magnetic field, whereas a charge at rest does not. So a charge
carried along by the train would generate a magnetic field, but someone on the train, applying the laws of
electrodynamics in that system, would predict no magnetic field.

But there is an extraordinary coincidence that gives us pause. Suppose we mount a wire loop on a freight
car, and have the train pass between the poles of a giant magnet. For the ground observer, as the loop
rides through the magnetic field, a motional emf is established because of magnetic force on the charges. If
someone on the train applied the laws of electrodynamics in that system, he wouldn’t predict a magnetic
force, because the loop is at rest. But as the magnet flies by, the magnetic field in the freight car changes,
and a changing magnetic field induces an electric field, creating the same emf.

Einstein’s predecessors had no doubts which observer was right and which is not. They thought of electric and
magnetic fields as strains in an invisible jellylike medium called B, which permeated all of space. The speed
of the charge was to be measured with respect to the ether - only then would the laws of electrodynamics
be valid. Of course this was later corrected when it was found that the speed of light is exactly the same in
all directions, which shouldn’t be the case if the ether really existed.

About the emf experiment Einstein published the following: ”If the interpretations on emf differ (one calling
the process electric, the other magnetic), so be it; their actual predictions are in agreement.”

And now we get to Einstein’s two famous postulates:

i The principle of relativity. The laws of physics apply in all inertial reference systems.

ii The universal speed of light. The speed of light in vacuum is the same for all inertial observers,
regardless of the motion of the source.
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12.1.2 The Geometry of Relativity

(i) The relativity of simultaneity. Two events that are simultaneous in one inertial system are not,
in general, simultaneous in another.

(ii) Time dilation. Moving clocks run slow. I.e. the interval in the moving system is shorter, and is
given by

∆t̄ =
√

1− v2/c2∆t =
∆t

γ

The interval measured in the moving frame, ∆t̄, is shorter by a factor γ, also known as the Lorentz factor.

γ ≡ 1√
1− v2/c2

(iii) Lorentz contraction. Moving objects are shortened, but dimensions perpendicular to the velocity
are not contracted.

∆t̄ =
1√

1− v2/c2
∆x = γ∆x

(iv) Einstein’s velocity addition rule. We all know that if A has a relative speed to B and B has a
relative speed to C, that the speed of A relative to C will be

vAC = vAB + vBC

This is known as Galileo’s velocity addition rule, but it is incompatible with the second postulate. In
special relativity it is replaced by Einstein’s velocity addition rule:

vAC =
vAB + vBC

1 + (vABvBC/c2)

12.1.3 The Lorentz Transformations

Any physical process consists of one or more events. An “event” is something that takes place at a specific
location (x, y, z), at a precise time (t). The Galilean transformations can be used to transform the
coordinates (x, y, z, t) of a particular event E in one inertial system S to the coordinates (x̄, ȳ, z̄, t̄) in
another inertial system S̄:

(i) x̄ = x− vt,
(ii) ȳ = y,

(iii) z̄ = z,

(iv) t̄ = t.

In the context of special relativity, however, this won’t work due to time dilation and Lorentz contraction.
Then in relativistic cases we need to use the Lorentz transformations:

(i) x̄ = γ(x− vt),
(ii) ȳ = y,

(iii) z̄ = z,

(iv) t̄ = γ
(
t− v

c2
x
)
.
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12.1.4 The Structure of Spacetime

(i) Four-vectors. The Lorentz transformations take on a simpler appearance when expressed in terms of
the quantities

x0 ≡ ct, β ≡ v

c
.

Using x0 (instead of t) and β (instead of v) amounts to changing the unit of time from the second to the
meter. If, at the same time, we number the x, y, z coordinates, so that

x1 = x, x2 = y, x3 = z.

then the Lorentz transformations read

x̄0 = γ(x0 − βx1),

x̄1 = γ(x1 − βx0),

x̄2 = x2,

x̄3 = x3.

Or 
x̄0

x̄1

x̄2

x̄3

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3


Letting Greek indices run from 0 to 3, this can be rewritten to

x̄µ =

3∑
ν=0

(Λµν )xν

where Λ is the Lorentz transformation matrix (the superscript µ labels the row, the subscript ν labels the
column). One virtue of writing things in this abstract manner is that we can handle in the same format a
more general transformation.

There is a 4-vector analog to the dot product called the four-dimensional scalar product:

−a0b0 + a1b1 + a2b2 + a3b3

as can be seen it’s not just the sum of the products, the zeroth components have a minus sign. It also has
the same value in all inertial systems:

−ā0b̄0 + ā1b̄1 + ā2b̄2 + ā3b̄3 = −a0b0 + a1b1 + a2b2 + a3b3

just as the ordinary dot product is invariant (unchanged) under rotations.

To keep track of the minus sign, it is convenient to introduce the covariant vector aµ, which differs from
the contravariant aµ only in the sign of the zeroth component:

aµ = (a0, a1, a2, a3) ≡ (−a0, a1, a2, a3)

This can be formally expressed using the (Minkowski) metric

aµ =

3∑
ν=0

gµνa
ν , where gµν ≡


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The scalar product can now be written using the Einstein summation convention, which says that is
implied whenever a Greek index is repeated in a product—once as a covariant index and once as contravariant,
so

aµb
µ = aµbµ = −a0b0 + a1b1 + a2b2 + a3b3
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(ii) The invariant interval. The scalar product of a 4-vector with itself is aµaµ = −(a0)2 + (a1)2 +
(a2)2 + (a3)2, and if

aµaµ > 0, then aµ is called spacelike

aµaµ < 0, then aµ is called timelike

aµaµ = 0, then aµ is called lightlike

Suppose event A occurs at (x0
A, x

1
A, x

2
A, x

3
A), and event B at (x0

B , x
1
B , x

2
B , x

3
B). The difference,

∆xµ ≡ xµA − x
µ
B ,

is the displacement 4-vector. The scalar product of ∆xµ with itself is called the invariant interval
between two events:

I ≡ (∆x)µ(∆x)µ = −(∆x0)2 + (∆x1)2 + (∆x2)2 + (∆x3)2 = −c2t2 + d2

where t is the time difference between the two events and d is their spatial separation. This interval is called
invariant because it remains the same when you transform to a moving system.

If I < 0, then there exists an inertial system in which the two events occur at the same point.

If I > 0, then there exists an inertial system in which the two events occur at the same time.

If I = 0, then the two events could be connected by a light signal

(iii) Space-time diagrams. A Minkowski diagram is a plot where position is plotted horizontally and
time, or x0 = ct, vertically. Velocity is then given by the reciprocal of the slope. A particle at rest is
represented by a vertical line; a photon, traveling at the speed of light, is described by a 45o line; and a
rocket going at some intermediate speed follows a line of slope c/v = 1/β. The trajectory of a particle on a
Minkowski diagram is called a world line.

Figure 1: An example of a Minkowski diagram

Notice that the slope of the line connecting two events on a space-time diagram tells you at a glance whether
the displacement between them is timelike (slope greater than 1), spacelike (slope less than 1), or lightlike
(slope is 1), your world line can never have a slope less than 1. Accordingly, your motion is restricted to
the wedge-shaped region bounded by the two 45o lines, as can be seen above. If we include a y axis coming
out of the page, the “wedges” become cones—and, with an undrawable z axis, hypercones. Because their
boundaries are the trajectories of light rays, we call them the forward light cone and the backward
light cone. Also important to remember is that the displacement between causally related events is always
timelike, and their temporal ordering is the same for all inertial observers.
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12.3 Relativistic Electrodynamics

12.3.2 How the Fields Transform

Unlike Newtonian mechanics, classical electrodynamics is already consistent with special relativity Maxwell’s
equations and the Lorentz force law can be applied legitimately in any inertial system. Of course, what one
observer interprets as an electrical process another may regard as magnetic by another observer, but the
actual physics they predict will be identical.

Now we want to find the set of transformation rules. Before we do that there is an important experimental
fact:

charge is invariant,

the charge of a particle is a fixed number, independent of how fast it happens to be moving. We also assume
that the transformation rules are the same no matter how the fields were produced: electric fields associated
with changing magnetic fields transform the same way as those set up by stationary charges.

The transformation rules from one inertial system S to another system S̄ that is moving in the x direction,
with a velocity v are given by

Ēx = Ex, Ēy = γ(Ey − vBz), Ēz = γ(Ez + vBy)

B̄x = Bx, B̄y = γ
(
By +

v

c2
Ez

)
, B̄z = γ

(
Bz −

v

c2
Ey

)
If either E or B are inclined to the axis, you should find their projections, transform them and reconstruct
the fields. There are two special cases that warrant particular attention:

1. If B = 0 in S, then

B̄ = − 1

c2
(v × Ē)

2. If E = 0 in S, then
Ē = v × B̄

In other words, if either E or B is zero (at a particular point) in one system, then in any other system the
fields (at that point) are very simply related by one of these two equations.

So this has been all of Electricity and Magnetism, good luck on the exam if you’ve used my summaries! (If
you didn’t use my summary but still somehow read this, I also wish you good luck)
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